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Abstract Opening of the furan ring and concomitant closure of a cyclopropane ring was observed
in the reaction of 2-methoxy- and 2-p-tolyloxyfuran with 2,3-bis(trifluoromethyl)fumaronitrile
(irans-BTE). Electrophilic 5-attack gives rise to a zwitterion which can rotate about the acceptor
bond, dissociate to reactants, or furnish diastercoisomeric cis-3-cyclopropylacrylates. In the pre-
sence of pyridine, 1,3-prototropy converts the zwitterion to S-substituted furans,

Normal Diels-Alder reactions are fast if the diene is electron-rich and the dienophile electron-
deficient; the interaction is controlled by HO(diene) - LU(dienophile) 3. However, in extreme cases the
"two-bond nucleophilicity” of the diene may be superseded by the "one-bond nucleophilicity*.*

In the reaction of 2-methoxyfuran (1, 1.1 equiv) with pure 2,3-bis(trifluoromethyl)fumaronitrile >
(trans-BTE, 3, sublimed and twice recryst. from CS,) in CDCl, at 25°C, the orangered charge-transfer
color faded in several hours. Quantitative ’F NMR analysis with trifluoroanisole as weight standard
revealed compiete formation of the cis-3-substituted methyl acrylates 4 and 6 (77:23) containing frans-
or cis-located CF; groups at the newly formed cyclopropane ring. After distillation at 90°C/0.2 torr the
diastereoisomers were separated by thick-layer chromatography (tlc) on silica gel; 4 was crystalline (mp
44-46°C), and 6 remained oily.6

H\ 2 3 /H CF; H\ /H CN
3__ 4 FiC, CN c= 2 CN c=C CN
N 7/ 25°C 1/ 2 /
{ N + fp=C  — Ro—¢ = , RO~C !
ROZ™o NC CF, Yo H CNEr, Y% H CFRicr
1 R=CH; 3 (trans-BTE) 4 R=CH, 6
2 R= p-CH3C5Hg 5 R= p—CHgCQHg 7

A slower opening of the furan ring was observed with 2-p-tolyloxyfuran (2, 1.3 equiv) 7 and pure
trans-BTE (CDCl,, r.t.). The '°F NMR spectrum after 14 d indicated 86% of the p-tolyl acrylates § and
7 in the ratio of 76:24; 3% of the substituted furans 11 and 13 occurred, and 6% of 3 being still uncon-
sumed. An analogous work-up afforded pure 5 (mp 42-43°C) and 7 (mp 90-92°C).

IR frequencies of 1722 and 1726 cm’! for 4 and 6 reveal a conjugated ester carbonyl. The 2-H
and 3-H signals appear at 5§, 6.42 and 6.15 with 12,3 = 11.1 Hz for 4, and 6.51, 6.12, Tz = 10.9 Hz, for
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6. These are cis-vinylic couplings; J ;. for methyl acrylate amounts to 10.2 Hz whereas J34 = 3.5 Hz for
2-methoxyfuran is much smaller. The multiplicity of the 3-H signal is dd (/, 3 = 7.2 Hz) for 6, but ddg
(/33 = 6.7 Hz, 5],,’F = 2.3 Hz) for 4. Fluorine couplings are transmitted through space, and a cis-vic
relation of 2’-CF, and the acrylic ester residue at C-3’ in 4 is diagnosed from the long range H,F coup-
ling.

The cyclopropane 4 is chiral, and 6 contains a plane of symmetry. The stereochemistry is reflec-
ted by 8. 29.6, 312 (C-1', C-2", U = 39 Hz) and 314 (C-3', Jep = 1.9 Hz) for 4 as well as by 34.3
(C-1' + C-2, U = 45 Hz) and 29.3 (C-3', ¥, ~ 2 Hz) for 6; the low & values are indicative of the
three-membered ring. Only the diastereoisomer 4 with trans-located CF; groups shows non-equivalent
pairs of CF, and CN groups.

The 'F NMR spectrum of 4 consists of a d at & -61.3 (2-CF,) and s at -65.8 (1'-CF,); the lack of
F,F coupling is consistent with trans-CF, groups at the cyclopropane ring. The equivalence of I-CF,4
and 2’-CF; in 6 gives rise to s at §g -61.9. There is no coupling between the CF,-groups and the vinylic
3-H in 6, thus excluding a third conceivable stereoisomer with all-cis relation of substituents at the
three-membered ring. The NMR data of the p-tolyl acrylates 5 and 7 are closely related.

4

NC 3
CF
L= @,, CF; @ oCF;3
Pyr- RO cs RO N~ ~ClacN

1,2+3 - f % — 0 ~=CN ,
RO/-—\? o Cruien dine :'C“\CN _C wCFy
7N R, H7 e, H™ e
F;C\ /CF; o
/C=C\ l thres 10 R=CH;, 12 erythro
NC CN 11 R=p-CHyCsH;, 13
8 {(cis-BTE) 4-7

Zwitterion 9 resulting from the electrophilic attack of 3 at the furan-5-position is a plausible
intermediate. An intramolecular nucleophilic substitution (S\2 type) may be responsible for the ope-
ning of the furan ring and the simultaneous closing of the three-membered ring. When cis-BTE 8 was
reacted with the nucleophilic furans 1 and 2, its equilibration with trans-BTE (3/8 = 95:5) was much fa-
ster than the opening of the heterocycle which furnished virtually the same ratios of 4/6 and 5/7,
respectively, as observed with trans-BTE 3 8. Thus, the reversible dissociation and the irreversible intra-
molecular substitution are taking place from an established rotational equilibrium of 9 about the mar-
ked bond.

Concentration measurements by 1°F NMR analysis in CDCl,4 at 25°C afforded the rate constants
for the opening of the furan ring with trans-BTE: k, = 6.6 10 M-!s"! for 1 and 7.6 106 M-Is'! for 2.
Thus, the heterocycle of the more nucleophilic 1 is opened 85 times faster than that of 2. These overall
k, values pertain to the reversible electrophilic attack and the substitutive ring-opening (see formula
scheme). The influence of solvent polarity is positive: cyclopropane formation from 2 + 3 in nitro-
methane was 30 times faster than in CDCL,;.

The zwitterion 9 can regain furan aromaticity by base-catalyzed 1,3-prototropy. When the reac-
tion of 1 or 2 with trans-BTE was run in the presence of 0.24 equiv of pyridine, cyclopropane formation
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was suppressed in favor of the substitution products 10 + 12 and 11 + 13, respectively. Only 12 was ob-
tained crystalline (mp 73-75°C); the lability towards silicage] (see below) thwarted the chromatographic
separation. The 'H NMR spectra signaled furan derivatives, e.g., two d at 8,4 5.32 (3-H) and 6.85 (4-H)
with .13’4 = 3.5 Hz for 11; the q at &, 4.38 (2"-H) dispiays the coupling by CF, Uy p = 6.1 Hz). The ten-
tative assignment of thireo and erythro configurations (60:40) is based on the premise that conformations
with an intramolecular hydrogen bond of the acidic 2°-H with the furan oxygen play a major role.’ In the
system 2 + trans-BTE in CDCIl, at 25°C, 0.50 M in pyridine, the rate of BTE consumption was measu-
red: k, = 1.0 10> M"’s is 130 times higher than k, for the opening of the furan ring.

- ~HF 4+ \/
H,C0"N\, <1: “CF3 HCOT N, ,c\ —CHICF)CN - H,CO ?
CN F,C CN CF,
(m/z 223) 100°%. M (312) 19 (204) 97
14 15 16

The MS (70 eV, 25°C) of 10,12 reveals two major pathways from the molecular radical ion 15 to
stabilized onium ions. The elimination of HF, followed by loss of CF,, provides 14 with its oxonium, al-
lylic and benzylic resonance as the parent peak. The breaking of the central C-C bond of the penta-
substxtuted ethane furnishing 16 has a share of 97%. A fragment C,H,0, (m/z 82, 18%) is probably
OnC-CH CH-C=0. All the formulae were secured by high resolution.

F3? ?N —HF F3? /CN +H 20 F:c CN —HF F;(': CN F
R=—C—f—H — R=C—C.. — R—c—-c—-cr-',oa — R—(;:—C':—C
NC CF, NG CF2 NC H NC H o
11'13 +H201-HF
-
ANy P e PG
R = p-CHyCeHO R=——&Q R—C—CHz +—— R—C—C—COMH
© NC  ClOCH3h CN NC H
17 18

Surprisingly, the attempt of separating the threo and erythro forms, 11 and 13, by tlc on silicagel
led (after distillation at 110°C/0.001 torr) to 72% of 18 in which the 2’-CF, is formally replaced by H.
The CH, group appears as an AB spectrum at 5, 3.29 and 3.38 with J = 16.8 Hz. The C-2’ of threo-
11 at 5.41.8 (¥, = 33.9 Hz) is shifted in 18 to 225 (Jep~2Hz) whereas the C-1" signal has hardly
changed (6,484 with 2/ = 32.4 Hz in 11 and 46.6 with 2.ch. = 32.3 Hz in 18). Two d at &, 5.55 and
6.80(J = 3.5 Hz) for 3-H and 4-H establish the intact furan ring of 18.

A plausible solution of the "whodunit” is depicted in the formula scheme above. In contrast to
general belief, commercial silicagels are basic !® and can deprotonate 11/13 and intermediate species.
The conversion of 11/13 to 17 (38%) with 2 equiv of sodium methoxide in methanol may follow a simi-
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lar mechanistic pattern. The ketene acetal 17 shows the OCH, signals at &, 3.87 and 4.25; the remai-
ning CF; occurs as d at 5, ~70.8, coupled by the 4-H of the furan with 0.9 Hz.

--3-&» H3Cl —— HgCO‘C/-\C"’OH ! DH
H;CO,:\O \\0 O o H

19 22

Dilute HCl in aqueous DMSO catalyzes the hydrolysis of 1; 16% of methyl 4-hydroxy-cis-croto-
nate (21) and 60% crotonolactone (22) were reported;!! the mechanism via 19 and 20 is not closely re-
lated to our ring opening. Greater is the similarity with the ring opening of S-alkoxyoxazoles with
TCNE, triazolinedione or other electrophilic double bonds;'? however, in the stabilization of the in-
termediate zwitterions, no three-membered rings are formed. The closure of the cyclopropane ring by
substitution, 9 + 4 - 7, reminds of the first synthesis of a cyclopropane from the anion of diethyl 2-bro-
moethylmalonate carried out by W. H. Perkin jr. in the Munich laboratory 110 years ago.13
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